Acta Crystallographica Section B

Structural

Science
ISSN 0108-7681

Vasyl Sidey

Department of Chemistry and Research Institute for Physics and Chemistry of Solids, Uzhgorod National University, Pidgirna Street 46, Uzhgorod 88000, Ukraine
© 2010 International Union of Crystallography Printed in Singapore - all rights reserved

On the accurate bond-valence parameters for the $\mathbf{S b}^{3+} / \mathrm{O}^{2-}$ ion pair

The improved values of the bond-valence parameters for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair, $r_{0}=1.927 \AA$ and $b=0.446 \AA$, have been deduced from the crystal structures of the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ and from the set of precisely determined complex structures containing $\left[\mathrm{Sb}^{3+} \mathrm{O}_{n}\right]$ coordination shells.

1. Introduction

The bond-valence model (BVM) in its modern form is a powerful and convenient tool in validating newly determined crystal structures and predicting bond lengths in the structures of known chemical composition and presupposed bondnetwork topology (Brown, 2002, 2009b).

The bond valence (BV) s is defined as part of the 'classical' atomic valence shared with each bond. According to the bondvalence sum (BVS) rule, the oxidation state (atomic valence) V_{i} can be calculated from the sum of the individual bond valences $s_{i j}$ (where j denotes an atom bonded to i), as given by

$$
\begin{equation*}
V_{i}=\Sigma_{j} s_{i j} . \tag{1}
\end{equation*}
$$

The valence of a bond (measured in 'valence units', v.u.) is considered to be a unique function of the bond length; the most commonly adopted empirical expressions for the relationship between the bond valences $s_{i j}$ and the bond lengths $r_{i j}$ are

$$
\begin{equation*}
s_{i j}=\left(r_{0} / r_{i j}\right)^{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{i j}=\exp \left[\left(r_{0}-r_{i j}\right) / b\right] \tag{3}
\end{equation*}
$$

where r_{0}, n and b are the empirically determined parameters for a given ion (atom) pair, r_{0} being the length of the conceptual bond of unit valence with $s_{i j}=1$ (Brown \& Shannon, 1973; Brown \& Altermatt, 1985). Although both (2) and (3) demonstrate virtually the same performance in approximation of the real (observed) 's $s_{i j}$ versus $r_{i j}$ ' curves (Brown, 2002), (3) is used in almost all recently published works concerning the BVM applications. The b parameter in (3) is commonly taken to be the 'universal constant' equal to $0.37 \AA$, and the r_{0} parameters have been determined for a large number (~ 1000) of ion pairs, assuming $b=0.37 \AA$ (Brown \& Altermatt, 1985; Brese \& O’Keeffe, 1991). Hereafter, the BV parameters determined using the 'universal constant' will be referred to as the conventional BV parameters.

In well determined stable ordered crystal structures investigated under ambient conditions, the BVS values calculated for all crystallographically distinct atoms are typically very close to the expected V_{i} values; large deviations between the

Received 9 January 2010
Accepted 9 March 2010

BVS and V_{i} values can really indicate that the structure is incorrect. It must be noted, however, that applicability and efficiency of the BVM are critically dependent on the quality of the BV parameters. High-quality BV parameters are expected to give reasonable BVS values over the full range of observed bond lengths and coordination numbers (CNs) of a given ion pair. Furthermore, high-quality BV parameters should accurately reproduce typical interatomic distances $r_{i j}$ observed for a given ion pair in regular (or nearly regular) coordination shells ${ }^{\mathbf{1}}$ with different CNs.

In most cases, the performances demonstrated by the conventional BV parameters are reasonably high; but for certain ion pairs (especially for those having a wide range of CNs) close approximations of the real ' $s_{i j}$ versus $r_{i j}$ ' correlations are possible only by simultaneous fitting of both r_{0} and b (e.g. Krivovichev \& Brown, 2001; Locock \& Burns, 2004). The unacceptably low performance of the conventional BV parameters reported for such ion pairs can be easily detected by systematic variations of the BVS values calculated for different CNs of these ions (Sidey, 2008, 2009b).

In recent BVM literature, a few attempts to improve the poorly determined 'classical' (Brown \& Altermatt, 1985; Brese \& O'Keeffe, 1991) conventional BV parameters for the $\mathrm{Sb}-\mathrm{O}$ bonds ($r_{0}=1.973 \AA$ for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair and $r_{0}=1.942 \AA$ for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair) have been undertaken.

Palenik et al. (2005) have reported the 'new' conventional BV parameters $r_{0}=1.955 \AA$ for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair and $r_{0}=$ $1.912 \AA$ for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair. The procedure used by Palenik et al. (2005) is equivalent to that described by Brese \& O'Keeffe (1991) for direct determination of the conventional BV parameters. This 'traditional' scheme includes:
(i) selecting the most reliable dataset of bond lengths for a given ion pair;
(ii) solving (1) for every selected coordination shell by using

$$
\begin{equation*}
r_{0}=b \ln \left[V_{i} / \Sigma_{j} \exp \left(-r_{i j} / b\right)\right], \tag{4}
\end{equation*}
$$

where $b=0.37 \AA$;
(iii) averaging the r_{0} values calculated for a given ion pair.

From the crystal structure of $\mathrm{Sb}_{2} \mathrm{O}_{5}$ (Jansen, 1978, 1979) considered as the 'reference structure' (the definition of this term is given in $\S 4$), Sidey et al. (2008) have derived $r_{0}=$ $1.908 \AA$ and $b=0.409 \AA$ for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair. The mean value of the $\mathrm{O}-\mathrm{Sb}^{5+}$ bond lengths observed for the twocoordinated O atoms in the structure of $\mathrm{Sb}_{2} \mathrm{O}_{5}(1.908 \AA)$ has been taken as the physically meaningful r_{0} parameter for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair; and the b parameter has been adjusted to give $\mathrm{BVS}=5 \mathrm{v} . \mathrm{u}$. for the Sb^{5+} ions in the structure of $\mathrm{Sb}_{2} \mathrm{O}_{5}$.

Sidey (2009a) has obtained $r_{0}=1.924 \AA$ and $b=0.47 \AA$ for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair by least-squares fitting the power-law curve (2) of Brown \& Wu (1976) to (3). In this way, the BV parameters were also determined for the $\mathrm{Sn}^{2+} / \mathrm{O}^{2-}, \mathrm{Te}^{4+} / \mathrm{O}^{2-}$ and $\mathrm{I}^{5+} / \mathrm{O}^{2-}$ ion pairs (Sidey, 2009a).

[^0]In a very thorough investigation of the $\mathrm{Sb}-\mathrm{O}$ bonds, Mills et al. (2009) have reported $r_{0}=1.925 \AA$ and $b=0.455 \AA$ for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair and $r_{0}=1.904 \AA$ and $b=0.430 \AA$ for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair. The statistical procedures used by Mills et al. (2009) [i.e. minimization of the function $F=\sum\left(V_{i}-\mathrm{BVS}\right)^{2}$ for the set of selected coordination shells] are either equivalent (for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair) or very similar (for the $\mathrm{Sb}^{5+} /$ O^{2-} ion pair) to that used by Locock \& Burns (2004) to determine the BV parameters for the $\mathrm{Tl}^{+} / \mathrm{O}^{2-}$ ion pair. In the latter case, Mills et al. (2009) optimized the BVS values not only on the Sb^{5+} cations but also on the O^{2-} anions of some structures considered as the 'reference structures'.

Comparison (Mills et al., 2009) of the BV parameters reported by different authors for the $\mathrm{Sb}-\mathrm{O}$ bonds has clearly shown that the BV parameters reported by Mills et al. (2009) for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ and $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pairs and by Sidey et al. (2008) for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair are definitely close to optimum.

The results presented here were obtained in the summer of 2009, when the above article of Mills et al. (2009) had not yet been published. Being involved in the systematic investigations of the ternary systems $\mathrm{Hg}(\mathrm{Pb}, \mathrm{Zn})-\mathrm{Sb}-\mathrm{O}$ (Sidey et al., 2008,2010), and being interested in the development of reliable schemes for determining the high-quality BV parameters, the author of the present work decided to derive, as accurately as possible, the BV parameters for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair from the precisely determined crystal structures. The main reason for this work was the fact that the r_{0} and b parameters obtained for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair from the corresponding Brown-Wu parameters r_{0} and n (Brown \& Wu, 1976; Sidey, 2009a) were based on the outdated structural information available in the mid 1970s.

Taking into account the very high performance of the BV parameters reported by Mills et al. (2009), the values obtained by the author for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair and reported here cannot be regarded as a significant improvement. Nevertheless, the author believes that the simple original scheme developed and used in the present work could be useful for the crystal chemists wanting to obtain the high-quality BV parameters for some other bond types. Furthermore, discussion on the quality of the BV parameters and on the different calculation schemes proposed for determining these parameters (§§2-4) might be interesting for all scientists working in the field of the BVM.

2. Methodology

2.1. Criteria of quality for the $B V$ parameters

Before starting the calculations of the BV parameters, the criteria of quality of these parameters must be postulated as clearly as possible. The author has set the following criteria (in order of decreasing importance):
(i) the BVS values calculated from the high-quality BV parameters for all the CNs observed for a given ion pair in accurately determined stable ordered structures should be close to V_{i} (Sidey, 2009b);
(ii) the average BVS value calculated for a statistically representative set of selected accurately determined stable ordered structures, $\langle\mathrm{BVS}\rangle_{\text {set }}$, should be close to $V_{i},{ }^{2}$
(iii) in stable stoichiometric ordered binary structures determined accurately and precisely, the average BVS values, $\langle\mathrm{BVS}\rangle_{\text {bin }}$, calculated for cations and/or anions (i.e. ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {bin }}$ and/or $\left.{ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {bin }}\right)$ should be equal to V_{i} within the limits of experimental uncertainty (Sidey, 2006; Sidey et al., 2008);
(iv) if a particular electropositive element A can form cations with different oxidation states $\left[\right.$ e.g. A^{m+} and $\left.A^{(m+n)+}\right]$, the r_{0} value determined for the A^{m+} / X ion pair is expected to be greater than that determined for the $A^{(m+n)+} / X$ ion pair.

Although all the above criteria are intended primarily for testing the quality of the BV parameters, criteria (ii) and (iii) are also suitable for selecting the 'reference systems' for analytical determining of the BV parameters (see $\S 4)$.

Criterion (i) is self-explanatory, and the importance of this criterion for the BVM has been discussed and clearly illustrated in recent articles of the author (Sidey, 2008, 2009b). Criterion (i) is the only obligatory criterion of the above list, while criteria (ii)-(iv) are definitely less important because of their dependence on criterion (i) and/or their limited applicability.

Criterion (ii) is common for all calculation schemes proposed for determining the BV parameters. Being taken separately, however, criterion (ii) is not sufficient for determining the accurate r_{0} and b values because the equality $\langle\mathrm{BVS}\rangle_{\text {set }} \simeq V_{i}$ can be achieved by underestimation and overestimation of the BVS values calculated for different CNs, as observed for some conventional BV parameters (Sidey, 2008, $2009 b$). In other words, if criterion (i) is fulfilled then criterion (ii) is also fulfilled, but not vice versa.

Criterion (iii) is based on the strict definition of the term 'bond valence' (or 'bond order') as the exact fraction (or number) of the Lewis electron pair(s) contributing to the bond (Sidey, 2006; Sidey et al., 2008). In the accurately and precisely determined stable stoichiometric ordered binary structure $A_{m} X_{n}$, the particular $s_{i j}$ values are not known a priori (in the general case); but their averaged sums calculated for cations and anions of this structure (i.e. the ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {bin }}$ and ${ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {bin }}$ values) can be safely set equal to the atomic valences expected (i.e. to the ${ }^{\text {cation }} V_{i}$ and ${ }^{\text {anion }} V_{i}$ values, respectively). Indeed, if the structure is binary, ${ }^{3}$ all the valence electrons (Lewis electron pairs) in this structure are shared exclusively between the A and X ions and all the $A-X$ bonds in this structure are not influenced by the additional ('thirdparty') ions. If the binary structure has stoichiometric composition, this indicates that all the valence electrons of the cations and anions of the structure are involved in the

[^1]chemical bonding and form the Lewis electron pairs. If the binary stoichiometric structure is stable, this indicates the absence of significant internal strains in the structure. If, at last, the above stable stoichiometric binary structure is ordered and well determined, this ensures that all the bond lengths in the structure are estimated adequately. The total number of Lewis electron pairs $\left({ }^{\text {Lep }} N\right)$ present in the unit cell of the above structure can be easily calculated as the number of cations (anions) present in this unit cell (${ }^{\text {cation }} N$ or ${ }^{\text {anion }} N$) multiplied by the formal oxidation state (atomic valence) of these cations (anions), i.e. ${ }^{\text {Lep }} N={ }^{\text {cation }} N \times{ }^{\text {cation }} V_{i}={ }^{\text {anion }} N \times$ ${ }^{\text {anion }} V_{i}$. Hence, in spite of the possible non-uniform distribution of the Lewis electron pairs in the unit cell of the above structure, their total number (${ }^{\text {Lep }} N$) is known exactly; this number is equal (by definition) to the total sum of the particular bond valences $s_{i j}$ present in the unit cell (${ }^{\text {total }} \mathrm{BVS}$). The averaged sums of bond valences calculated for cations and anions present in the unit cell of the above binary structure, ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {bin }}$ and ${ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {bin }}$, are equal to ${ }^{\text {total }} \mathrm{BVS} /{ }^{\text {cation }} N=$ ${ }^{\text {cation }} V_{i}$ and ${ }^{\text {total }} \mathrm{BVS} /{ }^{\text {anion }} N={ }^{\text {anion }} V_{i}$, respectively.

In testing the quality of the BV parameters, the $\langle\mathrm{BVS}\rangle_{\text {bin }}$ values must be calculated taking into account the site multiplicity factors for all cations (anions) if crystallographically distinct cations (anions) are present in the unit cell of the aforementioned binary structure; otherwise, the total number of the Lewis electron pairs present in the unit cell of the structure could be estimated improperly.

Taking into account the requirement of the charge balance for nominally ionic compounds, the atomic valences of cations (${ }^{\text {cation }} V_{i}$) and anions (${ }^{\text {anion }} V_{i}$) of the stoichiometric binary structure $A_{m} X_{n}$ are strictly related as $m \times{ }^{\text {cation }} V_{i}=n \times{ }^{\text {anion }} V_{i}$. Hence, in calculations of the BV parameters based on the binary 'reference structures' (see $\S 4$), it is sufficient to adjust the r_{0} and b values giving $\langle\mathrm{BVS}\rangle_{\text {bin }}=V_{i}$ only for cations (or only for anions) of the structure. This conclusion can be useful if the 'reference structure' selected contains only one symmetrically independent cation (or anion).

In spite of the 'apparent' correctness of criterion (iii), this criterion must be used with serious caution and sometimes must be relaxed. Thus, for example, the high-symmetry binary structures with regular coordination shells (especially, if these structures were determined in a small number of experiments) could be unsuitable for calculating the BV parameters because the experimental errors of determining the particular $A-X$ bond lengths for such coordination environments are always multiplied by a factor of the CN. However, for irregular coordination shells, the experimental errors of determining the particular $A-X$ bond lengths can effectively compensate for each other; and stable ordered binary structures containing such coordination environments can be used successfully as the 'reference structures'.

Employment of criterion (iv) in testing the quality of the BV parameters is possible only in special cases. If a particular electropositive element A can form cations with different oxidation states $\left[e . g . A^{m+}\right.$ and $\left.A^{(m+n)+}\right]$, then the $A^{m+}-X$ single-bond length is typically longer than the $A^{(m+n)+}-X$ single-bond length because of the increased interelectronic

Table 1
Reliability of the BV parameters obtained for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair in the work of Mills et al. $(2009)\left(r_{0}=1.925 \AA ; b=0.455 \AA\right)$ and here $\left(r_{0}=1.927 \AA ; b=0.446 \AA\right)$.

Compound	Reference	$\mathrm{CN} \ddagger$	${ }^{\text {Sb }}\langle\mathrm{BVS}\rangle_{\text {str }}$ (v.u. $) \dagger$	
			Mills et al. (2009)	This work
Binary				
$\alpha-\mathrm{Sb}_{2} \mathrm{O}_{3}$	Svensson (1974)	5	3.002 [+0\%]	2.993 [-0\%]
$\beta-\mathrm{Sb}_{2} \mathrm{O}_{3}$	Svensson (1975)	6	3.014 [+0\%]	3.007 [+0\%]
Average			3.01 (1)	3.00 (1)
Complex				
$\mathrm{Sb}_{2}\left(\mathrm{HPO}_{3}\right)_{3}$	Loub \& Paulus (1981)	5,6	3.024 [+1\%]	3.010 [+0\%]
$\mathrm{K}\left(\mathrm{SbMo}_{2} \mathrm{O}_{8}\right)$	Lii et al. (1990)	7	3.098 [+3\%]	3.077 [+3\%]
$\mathrm{LiSb}\left(\mathrm{Mo}_{2} \mathrm{O}_{8}\right)$	Lii \& Chueh (1991)	8	3.067 [+2\%]	3.045 [+2\%]
$\mathrm{Sb}_{2} \mathrm{VO}_{5}$	Merlino et al. (1989)	6	2.975 [-1\%]	2.966 [-1\%]
$\mathrm{Sb}_{2}\left(\mathrm{MoO}_{6}\right)$	Castro et al. (1997)	7	3.049 [+2\%]	3.032 [+1\%]
$\mathrm{ZnSb}_{2} \mathrm{O}_{4}$	Gutiérrez Puebla et al. (1982)	6	2.898 [-3\%]	2.895 [-4\%]
$\mathrm{Cs}_{3}\left(\mathrm{SbO}_{3}\right)$	Emmerling \& Röhr (2001)	3	2.980 [-1\%]	2.993 [-0\%]
$\mathrm{K}_{3}\left(\mathrm{SbO}_{3}\right)$	Emmerling \& Röhr (2001)	3	3.013 [+0\%]	3.027 [+1\%]
$\mathrm{K}_{2}\left(\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right)$	Hirschle \& Röhr (2000a)	3	2.928 [-2\%]	2.940 [-2\%]
$\mathrm{K}\left(\mathrm{SbO}_{2}\right)$	Hirschle \& Röhr (2000b)	4	2.982 [-1\%]	2.980 [-1\%]
NaSbMoO 5	Wang et al. (2004)	6	3.091 [+3\%]	3.081 [+3\%]
$\mathrm{Sb}_{5} \mathrm{O}_{6}\left(\mathrm{PO}_{4}\right)$	Adair \& Cheetham (2000)	4-8	2.965 [-1\%]	2.953 [-2\%]
Average			3.01(6)	3.00(6)

\dagger The relative ${ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\mathrm{str}}$ errors calculated as $\left\{\left[{ }^{[\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\mathrm{str}}-V_{i}\right] / V_{i}\right\} \times 100 \%$ are given in parentheses.
\ddagger The shortest distance from the central cation to another cation in a given crystal structure was assumed to be the physical limit of the coordination shell under consideration.

2.2. Selecting the structures for calculations

In accordance with criterion (iii), the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ have been selected as the 'reference structures'. Both these polymorphs are stable at ambient conditions, and are known in nature as the minerals valentinite (α) and senarmontite (β); moreover, their crystal structures have been precisely and accurately determined from single-crystal X-ray diffraction data (Svensson, 1974, 1975). The coordination shells in these structures are not regular, so the experimental errors of determining the particular $\mathrm{Sb}^{3+}-\mathrm{O}$ bond lengths are expected to compensate for each other.

Although no single solution $\left(r_{0} ; b\right)$ fits the above 'reference structures' exactly (see $\S 3$), an array of reasonable approximate solutions $\left(r_{0} ; b\right)$ has been found to exist for b values from ~ 0.40 to $\sim 0.60 \AA$. This array was additionally tested using a set of reliably determined structures, in accordance with criterion (ii). A set of 12 precisely and accurately determined crystal structures containing the [$\mathrm{Sb}^{3+} \mathrm{O}_{n}$] coordination shells (see Table 1) was selected from the Inorganic Crystal Structure Database (Belsky et al., 2002) by using the following stringent criteria of selection/rejection:
(i) since the above 'reference structures' were determined with quite high precision and accuracy ($R \leq 0.032$), only the structures investigated at ambient conditions and determined with $R \leq 0.032$ and with reasonably high precision from singlecrystal diffraction data were considered for the calculations (methodologically, poorly determined structures cannot be used for careful testing the BV parameters obtained from the precisely and accurately determined structures);
(ii) since the interatomic distances in the structures with disorder and/or partial occupancies can significantly vary from one particular unit cell to another, such structures were rejected from consideration;
(iii) in order to exclude the structures with potential but undetectable disorder, all the structures with the Sb^{5+} and/or F^{-}ions were also rejected;
(iv) at last, in order to exclude the structures with potentially serious steric constraints, the structures with large halide and chalcogenide anions and/or with $\mathrm{H}_{2} \mathrm{O}$ molecules were rejected.

2.3. Treatment of the structural data retrieved

After selection of the structures suitable for determining and/or testing the BV parameters for a given ion pair, a researcher must answer the following essential questions: What is the limit of a given coordination environment? What is a single BVS observation to fit the BV parameters against?

The limit of a given coordination environment $\left[A X_{n}\right]$ is usually taken as the sum of the van der Waals radii of the elements A and X (e.g. Krivovichev \& Brown, 2001; Locock \&

Burns, 2004; Mills et al., 2009). However, as the van der Waals radii (and any other set of empirical radii of atoms and ions) have just approximate values and cannot be used rigorously, it is methodologically more correct to furnish the limit of a given coordination environment by using a scheme not based on the atomic radii concept. In the present work, the shortest distance from the central cation to another cation in a given crystal structure was assumed to be the physical limit of the coordination shell under consideration. The above plain (and probably the simplest) scheme of determining the limits of coordination shells was successfully used by the author in his previous BVM related works (Sidey, 2006, 2008, 2009a; Sidey et al., 2008); and, in most cases, the limits found in this way were in good agreement with those determined using the van der Waals radii sums.

In works dedicated to calculating BV parameters, the BVS value calculated for every selected well determined coordination shell formed by the ion pair of interest is usually considered as an independent observation. If a set of structures selected for determining the BV parameters is large, this consideration can be used with reasonable success. If, however, the set of structures is rather small, as in the present work, this consideration should be revised. Indeed, every crystal structure reported has been determined with unavoidable systematic error(s), and every structure suffers, to some extent, from steric and electronic constraints. Hence, the BV parameters determined from a small number of structures in accordance with the above consideration can be seriously biased towards the errors and constraints present in the structure(s) containing the largest number(s) of symmetrically independent coordination shells.

For example, the crystal structure of $\mathrm{Sb}_{2}\left(\mathrm{MoO}_{6}\right)$ (Castro et al., 1997) considered in this work contains 16 crystallographically distinct coordination environments $\left[\mathrm{Sb}^{3+} \mathrm{O}_{n}\right]$, while most of the remaining structures listed in Table 1 contain only one coordination shell of this type. It is clear that the r_{0} and b parameters determined from the set of the 12 selected

Figure 1
The relations between the ' r_{0} versus b ' dependencies for the α (solid line) and β (dashed line) polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$.
structures (Table 1) in accordance with the above consideration would be artificially optimized mainly for the structure of $\mathrm{Sb}_{2}\left(\mathrm{MoO}_{6}\right)$, which is not desirable.

In order to avoid the aforementioned artificial optimization of the BV parameters, the statistical weights of all the structures selected for calculating the BV parameters should be properly equalized. Equalization of these weights can be achieved (and has been attained in the present work) by considering the average BVS value calculated from all the coordination shells formed by a given ion pair in the unit cell of a given crystal structure, ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {str }}$ or ${ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {str }}$, as a single BVS observation. Thus, the ${ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {set }}$ value has been calculated in the present work not from the BVS values of individual coordination shells $\left[\mathrm{Sb}^{3+} \mathrm{O}_{n}\right]$, but from the ${ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {str }}$ values (see $\S 3$).

3. Calculations and results

In the present work, all calculations have been performed by means of simple ad hoc programs written in BASIC; and all the numeric parameters have been taken with double precision.

As a first step, the ' r_{0} versus b ' dependencies have been explored for the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$. The exact r_{0} values have been calculated using (4) for all the b values from 0.20 to $0.80 \AA$ (with the b step of $0.01 \AA$). A graphical presentation of the ' r_{0} versus b ' dependencies found is given in Fig. 1.

One can see that no exact common solution $\left(r_{0} ; b\right)$ exists for the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$; in other words, the two ' r_{0} versus b ' curves in Fig. 1 do not intersect each other. However, within the limits of the b value from ~ 0.40 to $\sim 0.60 \AA$, the r_{0} values calculated for the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ are reasonably close to each other: the r_{0} differences observed do not exceed $0.005 \AA$. Hence, virtually any solution ($r_{0} ; b$) obtained for the α or β polymorph of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ at the b value from ~ 0.40 to $\sim 0.60 \AA$ satisfies criterion (iii) fairly well; this fact clearly indicates that some additional criteria of quality (see above) must be employed in order to calculate the highperformance BV parameters for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair.

Since criterion (iv) is qualitative rather than quantitative, application of this criterion cannot give the exact or optimum $\left(r_{0} ; b\right)$ solution a priori; but in the present work this criterion has substantially reduced the upper limit of the b value to $\sim 0.52 \AA$ [the r_{0} values calculated for the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ at $b \geq 0.52 \AA$ are significantly smaller than $\sim 1.91 \AA$, the value of the r_{0} parameter for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair (Sidey et al., 2008; Mills et al., 2009)].

Application of criterion (ii) is possible only after preliminary calculation of the particular values of BV parameters r_{0} and b (otherwise, there is nothing to test by using this criterion). Since the exact common solution ($r_{0} ; b$) does not exist for the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ (see above), the author decided to obtain and then to test a set of solutions (r_{0}; $b)$ giving ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\mathrm{bin}}={ }^{\text {cation }} V_{i}$ for the Sb^{3+} ions in both these polymorphs on average $\left[\right.$ i.e. the solutions $\left(r_{0} ; b\right)$ giving
$\left\langle{ }^{\text {Sb }}\langle\mathrm{BVS}\rangle_{\mathrm{bin}}\right\rangle=3$ v.u.]. Thus, the optimum solution $\left(r_{0} ; b\right)$ for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair was expected to give simultaneously $\left\langle{ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {bin }}\right\rangle=3$ v.u. and ${ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {set }}=\left\langle{ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {str }}\right\rangle=3$ v.u.
For all the b values from 0.40 to $0.52 \AA$ (with the b step of $0.001 \AA$), the mathematically correct r_{0} values giving $\left\langle{ }^{\text {Sb }}\langle\mathrm{BVS}\rangle_{\text {bin }}\right\rangle=3$ v.u. have been calculated using (5) [the modified version of (4)]

$$
\begin{equation*}
r_{0}=b \ln \left\{2 V_{i} /\left[\Sigma_{j} \exp \left(-r_{i j}^{\alpha} / b\right)+\Sigma_{j} \exp \left(-r_{i j}^{\beta} / b\right)\right]\right\} \tag{5}
\end{equation*}
$$

where $r_{i j}^{\alpha}$ and $r_{i j}^{\beta}$ are the $\mathrm{Sb}^{3+}-\mathrm{O}$ bond distances in the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$, respectively.

Then every obtained solution $\left(r_{0} ; b\right)$ giving $\left\langle{ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {bin }}\right\rangle=$ 3 v.u. has been used to calculate the corresponding $\left\langle{ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {str }}\right\rangle$ (or ${ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {set }}$) value; it has been established that the optimum BV parameters, $r_{0}=1.927 \AA$ and $b=0.446 \AA$, give $\left\langle{ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {bin }}\right\rangle=3.000$ v.u. and ${ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {set }}=\left\langle{ }^{\mathrm{Sb}}\langle\mathrm{BVS}\rangle_{\text {str }}\right\rangle=$ 3.000 v.u. (with the round-off error of ~ 0.0001 v.u.).

The performance of the BV parameters $r_{0}=1.927 \AA$ and $b=$ $0.446 \AA$ Abtained in this work is illustrated in Table 1. One can see that the BV parameters obtained in this work analytically and those obtained statistically in the work of Mills et al. (2009) demonstrate nearly equal performances and satisfy all the criteria of quality listed above (see $\S 2.1$), including the most important criterion (i). Taking into account the usual experimental uncertainty of crystallographic investigations, the differences between the BVS values calculated from the BV parameters determined here and from those reported by Mills et al. (2009) are definitely insignificant.

Nearly the same performance of the above two sets $\left(r_{0} ; b\right)$ can be easily explained by nearly perfect coincidence of the 's $s_{i j}$ versus $r_{i j}$ ' curves (Fig. 2) defined for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair as $s_{i j}$ $=\exp \left[\left(1.927-r_{i j}\right) / 0.446\right]$ (this work) and as $s_{i j}=\exp [(1.925-$ $\left.\left.r_{i j}\right) / 0.455\right]$ (Mills et al., 2009) within the full observed $r_{i j}$ range.

4. Discussion

Analysis of the BVM literature has revealed the fact that there are only two methodologically different approaches in determining the high-performance BV parameters r_{0} and b (or n) for individual ion pairs: statistical and analytical.

In the statistical approach, the BV parameters, r_{0} and b (or n), are determined by using non-linear least-squares fitting against the expected BVS (e.g. Brown \& Wu, 1976; Locock \& Burns, 2004) or $s_{i j}$ (e.g. Brown et al., 1984) values, or by using linear least-squares fitting (of r_{0} and b) against the expected $\ln \left(s_{i j}\right)$ values (e.g. Brown, 2009a). In some cases (e.g. when the ion pair of interest has only one statistically dominating 'usual' CN), close approximation of the real ' $s_{i j}$ versus $r_{i j}$ ' curve is possible only after introducing much higher statistical weights for coordination shells with 'unusual' CNs (Brown \& Shannon, 1973; Brown \& Wu, 1976). However, in general, the BV parameters obtained by using the statistical approach are of high quality.

The analytical approach of determining the high-performance BV parameters is based on the fact that two independent variables [i.e. r_{0} and b (or n)] can be mathematically
derived from (at least) two independent equations concerning these variables. In other words, in order to obtain the BV parameters for a given ion pair analytically, two independent 'reference systems' of this ion pair must be selected, and the solution ($r_{0} ; b$) common for both these 'reference systems' must be found.

The term 'reference system' used here denotes:
(i) a real (observed) or imaginary (statistically expected or scientifically predicted) bond length $r_{i j}$ ('reference bond length') for which the $s_{i j}$ value is expected to be known exactly;
(ii) a coordination shell ('reference coordination shell') for which the equation $\mathrm{BVS}=V_{i}$ is expected to be obeyed exactly;
(iii) a structure ('reference structure') for which the equations ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {str }}={ }^{\text {cation }} V_{i}$ and ${ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {str }}={ }^{\text {anion }} V_{i}$ are expected to be obeyed exactly;
(iv) a set of structures ('reference structure set') for which the equation ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {set }}={ }^{\text {cation }} V_{i}\left(\right.$ or $\left.{ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {set }}={ }^{\text {anion }} V_{i}\right)$ is expected to be obeyed exactly.

The solution $\left(r_{0} ; b\right)$ can be found in different ways: mathematically (i.e. by solving a system of two independent equations concerning r_{0} and b), graphically (i.e. by exploring the ' r_{0} versus b ' dependencies for the 'reference systems'), by testing the grid-search results etc. However, for more convenience and to save time, the 'reference systems' used in calculations of the BV parameters should be as simple as possible. So, if the 'reference structure' contains only one symmetrically independent cation (or anion), the coordination shell of this cation (anion) can be considered and treated as the 'reference coordination shell', and there is no reason to calculate the ${ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {str }}$ and/or ${ }^{\text {anion }}\langle\mathrm{BVS}\rangle_{\text {str }}$ values for this structure (see §2.1). Furthermore, if the 'reference coordination shell' $\left[A X_{n}\right]$ is regular, the $A-X$ bond length observed in this shell can be considered and treated as the 'reference bond length', so calculation of the BVS value for this shell is redundant (however, as mentioned in $\S 2.1$, regular coordination shells should be used cautiously).

Figure 2
The relations between the ' $s_{i j}$ versus $r_{i j}$ ' curves defined for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair as $s_{i j}=\exp \left[\left(1.925-r_{i j}\right) / 0.455\right]$ (dotted line; Mills et al., 2009) and as $s_{i j}=\exp \left[\left(1.927-r_{i j}\right) / 0.446\right]$ (solid line; this work).

In BVM works, different combinations of the 'reference systems' have been successfully used to determine the BV parameters (see below), although the term 'reference system' has never been used in those works and its methodological essence has never been discussed at all (to the author's knowledge).

Krivovichev \& Brown (2001) have used the two large 'reference structure sets' with the $\left[\mathrm{PbO}_{n}\right]$ and $\left[\mathrm{OPb}_{4}\right]$ coordination shells for determining high-quality BV parameters for the $\mathrm{Pb}^{2+} / \mathrm{O}^{2-}$ ion pair. When calculating the r_{0} and b parameters for the $\mathrm{Bi}^{3+} / \mathrm{Br}^{-}$ion pair, Sidey (2006) used a combination of the $\mathrm{Bi}-\mathrm{Br}$ 'reference bond length' $\left(r_{i j}=r_{0}\right)$ observed in the molecule BiBr_{3} and the $\left[\mathrm{BiBr}_{8}\right]$ 'reference coordination shell' observed in the crystal structure of $\alpha-\mathrm{BiBr}_{3}$. To determine the BV parameters for the $\mathrm{Pb}^{2+} / \mathrm{F}^{-}\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$ion pairs, Hu (2007) has used combinations of the $\mathrm{Pb}-X$ 'reference bond length' ($r_{i j}=r_{0}$) observed in the molecule $\mathrm{Pb} X_{2}$ ($X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I) and the 'reference structure set' with the [$\left.\mathrm{Pb} X_{n}\right]$ coordination shells. In order to derive the BV parameters for the $\mathrm{Sb}^{5+} / \mathrm{O}^{2-}$ ion pair, Sidey et al. (2008) used a combination of the statistically expected 'reference bond length' $\left(r_{i j}=r_{0}\right)$ observed in the $\left[\mathrm{OSb}_{2}^{5+}\right]$ coordination shells of the crystal structure of $\mathrm{Sb}_{2} \mathrm{O}_{5}$ and the $\left[\mathrm{Sb}^{5+} \mathrm{O}_{6}\right]$ 'reference coordination shell' present in the same structure of $\mathrm{Sb}_{2} \mathrm{O}_{5}$. To derive the BV parameters for the $\mathrm{Al}^{3+} / \mathrm{O}^{2-}$ ion pair, Sidey (2008) used the two statistically expected 'reference bond lengths' corresponding to the $\left[\mathrm{AlO}_{4}\right]$ and $\left[\mathrm{AlO}_{6}\right]$ coordination shells. In order to derive the BV parameters for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair, in the present work the author has used the two 'reference structure sets', one small set of the binary structures of the α and β polymorphs of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ and one larger set of precisely determined complex structures containing the [$\mathrm{Sb}^{3+} \mathrm{O}_{n}$] coordination shells.

In fact, the molecular structures of $\mathrm{BiBr}_{3}, \mathrm{PbF}_{2}, \mathrm{PbCl}_{2}$, PbBr_{2} and PbI_{2}, and the crystal structures of $\alpha-\mathrm{BiBr}_{3}$ and $\mathrm{Sb}_{2} \mathrm{O}_{5}$ mentioned above can be regarded as the 'reference structures'; but here the author has used the simplest possible presentations of those structures sufficient for determining the BV parameters (i.e. the 'reference bond lengths' and the 'reference coordination shells').

In spite of the use of different combinations of the 'reference systems', all the BV parameters determined in the aforementioned BVM work (and here) demonstrate reasonably high performances. This fact clearly indicates that the analytical approach can be successfully employed for determining accurate BV parameters. However, to the author's knowledge, the r_{0} and b values have never been obtained both statistically and analytically for the same ion pair demonstrating a wide $s_{i j}$ range (for such ion pairs, close approximations of the real 's $i_{i j}$ versus $r_{i j}$ ' curves are usually difficult). Therefore, there was no opportunity to test and to compare the results obtained for the same ion pair in the statistical and analytical approaches. In this respect, the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair is probably the first 'difficult' ion pair (i.e. that having a wide $s_{i j}$ range) for which the high-quality BV parameters have been obtained both statistically (Mills et al., 2009) and analytically (this work). Virtually the same high performance demon-
strated by the BV parameters reported for this ion pair in the article of Mills et al. (2009) and by the BV parameters obtained here (Table 1, Fig. 2) indicates that the procedure developed by the author and used in the present work is methodologically adequate.

However, it must be clearly noted that the remarkable similarity of the BV parameters obtained for the $\mathrm{Sb}^{3+} / \mathrm{O}^{2-}$ ion pair statistically (Mills et al., 2009) and analytically (this work) cannot be regarded as evidence for the universality of the calculation scheme proposed here: the criteria of quality of the BV parameters and the rules for selection of the 'reference systems' are still to be discussed within the crystallographic and mineralogical community. Nevertheless, if a researcher has found the BV parameters in the literature to be of poor quality, then the calculation scheme proposed in this work should always be considered for determining the high-quality BV parameters.

Finally, it must be stated that, in spite of the power of the statistical approach, the analytical approach of determining the BV parameters should never be ignored in the BVM: while the former approach is able to give the 'best-fit' results, the latter approach is a convenient tool for calculation of the BV parameters conforming to a particular chemical theory used for selection of the 'reference systems'. Comparison of the BV parameters determined in the above approaches for the same ion pairs can result in a number of interesting and scientifically important conclusions. Hence, further development of the analytical approach of determining the BV parameters is expected to become an important BVM branch in the near future.

The author thanks his colleagues and friends, Dr Ruslan Mariychuk and Dr Paul Popovich, for their assistance in the literature search.

References

Adair, B. A. \& Cheetham, A. K. (2000). J. Solid State Chem. 155, 451454.

Batsanov, S. S. (1986). Experimental'nye Osnovy Strukturnoi Khimii (Experimental Fundamentals of Structural Chemistry). Moscow: Izdatel'stvo Standartov (in Russian).
Belsky, A., Hellenbrandt, M., Karen, V. L. \& Luksch, P. (2002). Acta Cryst. B58, 364-369.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. IUCr Monograph on Crystallography 12. Oxford University Press.
Brown, I. D. (2009a). Acta Cryst. B65, 684-693.
Brown, I. D. (2009b). Chem. Rev. 109, 6858-6919.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Brown, I. D., Gillespie, R. J., Morgan, K. R., Tun, Z. \& Ummat, P. K. (1984). Inorg. Chem. 23, 4506-4508.

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
Castro, A., Enjalbert, R. \& Galy, J. (1997). Acta Cryst. C53, 15261529.

Emmerling, F. \& Röhr, C. (2001). Acta Cryst. C57, 1127-1128.
Gutiérrez Puebla, E., Gutiérrez Rios, E., Monge, A. \& Rasines, I. (1982). Acta Cryst. B38, 2020-2022.

Hirschle, C. \& Röhr, C. (2000a). Acta Cryst. C56, 5-6.

Hirschle, C. \& Röhr, C. (2000b). Z. Anorg. Allg. Chem. 626, 13051312.

Hu, S.-Z. (2007). Acta Phys. Chim. Sin. 23, 786-789 (in Chinese).
Jansen, M. (1978). Angew. Chem. 90, 141-142.
Jansen, M. (1979). Acta Cryst. B35, 539-542.
Krivovichev, S. V. \& Brown, I. D. (2001). Z. Kristallogr. 216, 245-247.
Lii, K. H. \& Chueh, B. R. (1991). J. Solid State Chem. 93, 503-509.
Lii, K. H., Chueh, B. R. \& Wang, S. L. (1990). J. Solid State Chem. 86, 188-194.
Locock, A. J. \& Burns, P. C. (2004). Z. Kristallogr. 219, 259-266.
Loub, J. \& Paulus, H. (1981). Acta Cryst. B37, 1106-1107.
Merlino, S., Orlandi, P., Perchiazzi, N., Basso, R. \& Palenzona, A. (1989). Can. Mineral. 27, 625-632.

Mills, S. J., Christy, A. G., Chen, E. C.-C. \& Raudsepp, M. (2009). Z. Kristallogr. 224, 423-431.

Palenik, R. C., Abboud, K. A. \& Palenik, G. J. (2005). Inorg. Chim. Acta, 358, 1034-1040.
Sidey, V. (2006). Acta Cryst. B62, 949-951.
Sidey, V. (2008). Acta Cryst. B64, 515-518.
Sidey, V. (2009a). Acta Cryst. B65, 99-101.
Sidey, V. (2009b). Acta Cryst. B65, 401-402.
Sidey, V. I., Milyan, P. M. \& Semrad, O. O. (2010). J. Alloys Compd. 490, 598-601.
Sidey, V. I., Milyan, P. M., Semrad, O. O. \& Solomon, A. M. (2008). J. Alloys Compd. 457, 480-484.
Svensson, C. (1974). Acta Cryst. B30, 458-461.
Svensson, C. (1975). Acta Cryst. B31, 2016-2018.
Urusov, V. S. (1995). Acta Cryst. B51, 641-649.
Wang, Y., Zhang, H., Huang, C., Sun, Q. \& Yu, X. (2004). Inorg. Chem. Commun. 7, 21-23.

[^0]: ${ }^{\mathbf{1}}$ For irregular coordination shells, the average values of bond valences $\left\langle s_{i j}\right\rangle$ and bond lengths $\left\langle r_{i j}\right\rangle$ do not correspond to each other, in accordance with the distortion theorem (Brown, 2002).

[^1]: ${ }^{2}$ In most cases, the $\langle\mathrm{BVS}\rangle_{\text {set }}$ values can be calculated only for cations (i.e. $\left.{ }^{\text {cation }}\langle\mathrm{BVS}\rangle_{\text {set }}\right)$ because coordination environments of anions in the structures of the complex compounds are rarely formed by cations of the same sort.
 ${ }^{3}$ One should not confuse the binary structures characterized by cations of one sort and by anions of one sort and the binary compounds that may contain ions of the same chemical elements in different oxidation states, as in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ or $\mathrm{Fe}^{2+} \mathrm{Fe}_{2}^{3+} \mathrm{O}_{4}$.

